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SYMBOLS (MKS Units or as Specified)

‘o

Electrical Symbols:

Ei = Incident electric field strength (volts/meter)
Es = Gradient at conductor surface (kv/mm)
H; = Incident magnetic field strength (amps/meter)
©
Vs = Base voltage of antenna (volts) “
Vi = Top hat voltage (kv) ) C)
©
6 Io = Antenna base current (amps) ®
®
Antenna Parameters: ©
©
Ly, = LEffective height {fcct or meters) @ ©
fo = Resonant freq@ncy (ke) ©,
©
Ry = Radiation resistance (ochms) ¢
© ® ©
@ C, = Effective antenna capacitance (pf) 6 ®
Cy = Near-base capacitance {pf) ®
C]
Cs = Static antenna capacitance (uf) = C, + Cp ®
@ ®
Ly, = Effective antenna induct(%nce (ph)
@
Zy, Xy = Antenna base impgganc@gz, reactance (ohms} & g €
bwy, = Bandwidth of theoretical lossless antenna (cycles)e
®
° a =©Aspect ratio (tower height/top hat span)
@ - ®
s ©5imilitude scaﬁ)ng factor to be applied to all dimensions
@
Range Calibration: ©
© o
K, = Ratio of monitor base voltage ® thc field incident on
@
the ®nodel = (Vu /Eg) o ) o
© ®
) h = Physical he®ht of thin monopolg‘ used in range calibration
Va = Base voltage of E-field monitor antenga {volts)
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1. INTRODUCTION

This report ‘presents informatién developed in the scale model
study of the high-power, very-low-frequency (vlf) transmitting antenna
for the U. S. Navy VLF Communication Facility, Pacific, The study is
an integral part of the final design effort under Contract NBy 37636 be-
tween the -U. S. Navy Bureau of Yards and Docks and the Joint Venture
firm of Holmes & Narver, Inc., Continental Electronics Manufacturing

Company, and DECO Elec‘gronics, Inc. (HNCD).

The basic configuration of the antenna system under study was
chosen in the Pmeliminary Engineering Report (PER) phase of the project.
This phase was carried out by the Joint Venture firm of Developmental
Engineergng Corgor%tion (later, DECO Electronics, Tnc.) and Holmes &
Narver, Inc., under Bureau of Yards and Docks Contract NBy 37598.
Supplement 1 of the PER, Single Modified (;_gtler Antenna and VLF An-

tenn Comparison, presented the recommended configuration based on

cost and performance data for a single-element antenna approximately

« o)
“28 perc%nt larger than tl(}»e Cutleg-type element. Further studies carried

out under Change Order F of Contract NBy 37598 provided cost-trade
information Iéelating to the aspect ratio (relation o%top hat spans and

©
tower heights) and structural alternatives such as halyard slope, canti-

©
lever length, etc, o

From c%nsiderations based on the PER, an initial choice of major
@

antenna dimensioné was %stablished. The purposg gf the rraodel study

@ degcribedgin this report is to present a detailed summary of the electri-

©
cal(performance dataélerived from a 1:100 scale model of the initial®@

antenna and of the subsequent modifications leading to a f’lnal de s?gn.
o e\,

°
e o

L1

]




2, TEST PROCEDURES

2.1 Model Ran_g_g

The model range used in this study is a modified version of the
one used in the PER modeling program. {See Appendix E of PER.)
An increase in the size of the antenna over that of the Appendix E
studies required an extension of the ground plane (as shown in Figure
2-1). To increase the accuracy of effective height measurements, it
was necessary to install an E-field monitor consisting of a short mono-
pole off the south end of the range. However, because of scheduling
consideraiions, the resonant frequency tests were performed before
the E-field monitor was calibrated. Thesc carlicr tests cmployed the

H-field monitor used in the PER test series.
2.2 Equipment

Except for the E-field monitor and current distribution probe,
the equipment ufed in this work was identical to that used in the PER

modeling.

2.2.1 Effective Height Measurements

Figure 2-2 is a block diagram of the equipment used in the
effective height measurements. The figure illustrates the use of the
E-field monitor employed in most of the work. However, some early
work in this study usedpthe H-field monitor {(RCA type WX-2C Field
Intensity Meter) as described in the PE‘;{. In using the E-field moni-
tor, the same receiver-voltmeter combination was employed to indi-
cate both the incident field {as indicated by the monitor base voltage) o
and the base voltage of the vlf antenna modei under test. Both the
monitor and the test antennas were terminated in low-input-capacitance

4]
cathode followers to reduce loading effects. In either case, the
Y -]

o [
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measurement consisted of tuning the receiver {R-390} to the local broad-
cast station (WAGE, 41290 kc) and observing a reference voltage on a
vacuum tube voltmeter (Ballantine 300) monitoring the receiver i-f out-
put during a period of no modulation. Then, the signal generator {GR
1001A) output was substituted for the antenna at the cathode follower

and adjusted to give the same reference indication in each case. The
actual recorded voltage was indicated by a calibrated rf voltmeter (HP

400H) across the signal generator output.

This technique uses the same procedure for measuring both the
incident field and the base voltage of the antenna under test, thus as-

suring the same degree of accuracy in both measurements.

2.2.2 Static Capacitance Measurements

Measurements of static capacitance were accomplished with the
equipment arrangement shown in Figure 2-3. Sfatic capacitance is de-
fined as the apparent capacitance at the oantenna terminals as the fre-
quency approaches zero, It is sufficient t}},at the test frequency not be
greater than a few percent of the resonant frequency for the purpose
of measur%ment.oln this case, resonance occurred near 3.0 mc, and
static capacitance was measured at 30 ke (i.e., 1 percent of resonant
frequency). The actual measurement involved a high-Q, parallel reso-
nant circuit employing a high-Q work coil, and a precision variable
capacitor (GR 722). The antenna was connected in such a way that its
capacitance appeared in parallel with this circuit® The variable capaci-
tor was then adjusted to bring the circuit to resonance as indicaled on
the rf voltmeter. The capacitor setting at resonance was recorded.
Then the antenna was removed from the circuit and the capacitor again
adjusted to restore resonance. The difference between the two capaci-

tor settings w%s determined to give the static capacitance of the antenna.
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It should be noted that the static capacitance measurement does
not indicate the distribution of capacitance within the circuit. It is con-
venient to consider the top hat as the main capacitor element. However,a
significant portion {5 to 10 percent) of the static capacitance results from
the downleads and appears to act on the ground side of the antenna induct-
ance. This effect cannot be seen without complete impedance data over

a wide frequency range, including the region around resonance.

2.2.3 Base Impedance Measurements

Base impedance measurements between approximately 1 and 4 mc
were obtained with the equipment shown in Figure 2-4. The measuring
instrument used was a radicdrequency impedance bridge (GR 1606A). A
signal generator {GR 1001A) provided the drive signal, and a receiver
(R-390) with a voltmeter (Ballantine 300) monitoring the i-f output pro-
vided the null indication. Frequency calibration was established by com-
parison with WWYV and at intermediate frequencies by use of an electronic

counter (HP 5243,

The measurement point for base impedance was at an opening in
the model Transmitter /Helix Building floor just below the bushings. A
short vertical lead provided the path from floor to bushing. Later,
measurements were made directly at the bushing entrance point to deter-
mine the inductance of the inserted lead, using the top of the corridor

dividing wall as the ground return terminal.

Resonant frequency was established by repeated impedance

measurements in the region of resonance.

2.2.4 Current Distribulion Measurements

The distribution of current over the antenna (top hat and down-

leads) was accomplished with the use of a small, electrostatically

2-6
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shielded oscillator positioned along the various conductors as shown in
Figure 2-5. The oscillator probe consisted of a self-contained 1560 kc
crystal-controlled transistor oscillator with a small coupling toroid,

all (except for a small break in the toroid shield) encompassed by an
electrostatic shield. This device, loosely coupled to the antenna con-
ductor under test, was passed along each conductor, and the receiver
(R-390) i-f output was monitored with an rf voltmeter (HP 400H). Before
and after each conductor test, the probe was coupled to the bus at the

bushing entrace point for a reference reading.

To establish proper operation of the probe oscillator, a short,
thin monopole was constructed, and current distribution measurements
were made using the probe. Since the current distribution on such an
antenna is well known (i.e., linear), it is possible to obtain a good

check on the probe performance.

2.2.5 Field Dist}'_ihution Measurements

In the area over and around the Transmitter/Helix Building
(T /HB), both E- and 1I-{ield measurements were made on the antenna
model, These measurements were made with small probes (loop for
magnetic field, capacitor for electric field) connected through coaxial
cables to a sensitive receiver (Stoddart NM-20B), This type of meas-
urement requires careful orientation and positioning of the sensing
device and adequate shielding to avoid stray pick-up. The receiver
provides an indication of only relative magnitude, and the data must
be normalized to a known reference value. Two types of reference,

or calibration, were used:

{a) The magnetic field probe positioned at the conducting sur-

face of the Transmitter /Helix Building (T/HB) or nearby ground screen,




CENTER TOWER

DECD 43-21 630320 B

DOWNLEAD

GROUND PLANE
T/HE

N N

RECEIVER
(R-380)

]lr

RF
VOLTHETER
(HP 400 H)

TYPICAL POINT AT ¥HICH
CURRENT (RELATIVE TO0 BASE)
IS 70 BE DETERMINED.

REFERENCE POINT ON DOWNLEAD
BUS ON T/HB ROOF.

i 1/2" 11/2"
fe— F—"—

asc
Pt

BRASS SHIELDING
BOX ‘\:;:)

1560 K€
TRANSISTOR

INDUCED
CURRENT
[ I
el
IS

LoaoP ANTENNA —-| l+l/2"

SHIELD CONDUCTOR

PROBE DETAIL

Figure 2-5 BLOCK DIAGRAM OF EQUIPMENT FOR ANTENNA
CURRENT DISTRIBUTION MEASUREMENTS

2-9



measures the tangential H-field component. At the surface, this com-
ponent is identically equal to the surface current density., Calibration
consisted of measuring the relative tangential H-field (i.e., surface
current density) at several points a short distance from the bushing
entrance point. Integrating the radial current density around a path
enclosing the bushing entrance yields the total base current. Other

readings were then referenced to this value.

{b} Thecapacitive E-field probe was calibrated by positioning
a short distance apart two metal sheets, large with respect to the 1-
inch probe, and providing rf excitation at the test frequency. For large
plates closely spaced, the field is uniform over most of the interior and
is equal to the ratio of the impressed voltage to the separation. This
calibration yields a proportionality constant which, when the actual base
current of the antenna model is measured, allows each relative E-field

reading to be referenced to an absolute value.
2.2.6 Corona Study

Qualitative data on the distribution of charge on the antenna was
obtained by applying high voltage (up to approximately 60 kv), 60-cycle
excitation to the model at night and photographically recording the oc~
currence of corona by means of long exposures. These photographs,
taken at progressively higher voltages, show the critical regions where
corona first appears, and can be correlated with indirect methods of
gradient analysis (i.e., current distribution). Since the critical gradient
{for corona formation is a non-linear function of the radius of curvature,
the direct scaling of corona onset voltage is nol possible {see Appendix
E). However, the capability of directly observing the entire antenna
{or a characteristic part such as one panel) at corona onset is highly

useful in confirming the indications of the alternate method,

%]
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2.3 Scale Model Factors

For all of the model work, a scale factor of 1:100 was employed,.
To convert to full-scale data, the model data is multiplied by the appro-

priate scaling factor below:

Parameter Scaling Factor
e Iffective Height (and all 100
other distances)
¢ (Capacitance 100
® Inductance 100
® TFrequency 0.01
¢ Radiation Resistance 1 (at scale frequency)
® Base Impedance 1 (at scale frequency)

To model the ohmic component of the resistance, it would be
necessary to scale all conductivities 100 times greater than the full-
scale values. Since this is obviously impossible, no attempt was made

to use base resistance data from the model.
2.4 Calibration

The purpose of the model range is to provide a relatively large,
smooth, highly conducting plane over which the incident radio-frequency
field propagates unperturbed by discontinuities and reflections. In
practice, this can only be approximated because some variations in the
surface characteristics still remain which cause small variations of the
incident field over the area of interest (i.e., the region around the test
antenna, including the monitor antenna which measures the incident
field). Therefore, it is necessary to perform calibration measurements
to determine the relation between the incident field at the monitor and

at the test antenna.




Effective height measurements were accomplished by comparing
the open-circuit base voltage Vy with the incident field strength E; at

the model:
hy = Vo /Ey meters . (2-1)

Since the incident field at the model is not necessarily equal to
that at the monitor but in all cases is directly proportional, the effective

height may be expressed as
hy = K, Vs /Vy meters , (2-2)
where Vy = monitor base voltage, and K, = range calibration constant.

The determination of the range calibration constant K, in Equation
2-2 was made using several short, thin monopoles of known effective
height. For a thin monopole, the effective height (hy) is simply related

to the physical height h by
hy =h/2 . (2-3)

Depending on the thickness of the monopole and on the near-base or in-
sulator capacitance, the actual effective height may depart from half the
physical height by as much as several percent. However, by a proper
choice of diamecter and base insulator configuration, the difference be-
tween Equation 2-3 and the actual effective height may be reduced to a

fraction of a percent.

For the calibration tests seven monopoles were employed. A
specially tapered 3-meter monopole was constructed to have uniform

capacitance per unit length,as suggested by Schelkunoff.! In theory,

! Schelkunoff, S. A., and H. T, Friis. Antennas, Theory and Practice.
New York, Wiley. 1952, P 318, Figure 10.9.




this element has an effective height equal to exactly half of its physical
height. However, some uncertainty about the near-base capacitance led
to the use of cylindrical monopoles of various lengths all utilizing the
same base configuration. Since the same near-base capacitance was
present in each monopole of this calibration series, an empirical deter-
mination of this parameter was possible through the correlation of the

measured effective height data.

Table 2-1 summarizes the range calibration data. The effective
heights shown are the assumed values of one-half the physical heights,
The ratio of monitor voltage Vy to base voltage Vp corrected for near-
base capacitance loading effects is as shown in the table at 1290 kc for

all test monopoles.
TABLE 2-1

Summary of Calibration Data

Element Element Effective Range

Length Diameter Height Vo /Vby Constant
{feet) (inches) (meters) (K,)

9.85 tapered 1.5010 .6724 1.0093

9. 85 1/4 1,5010 . 7143 1.0722

9. 00 1-1/8 1.3716 L7656 1.05014

12. 00 1-1/8 1.8290 . 5690 1.0407

15. 00 1-4/8 2,2860 4621 1.0564

18. 00 1-1/8 2.7432 .3823 1.0487

21.00 1-1/8 3.2004 . 3286 1.0517

average constant - 1.0470



Since the ratio Vy /Vy is theoretically a linear function of the
effective height hy, the last five monopoles (1-1/8 inch diameter) were
treated by the least-squares method to fit a line to the data. This
analysis yielded K, = 4,055, This value was used as the calibration
constant in the 1290-kc measurement of effective height rather than
the average value because more data was available to evaluate the in-

fluence of voltmeter (cathode follower) and near-base capacitance.



3. RESONANT FREQUENCY TES'I'S

An analysis of construction costs carried out under the PER
phase indicated that radiation system performance (primarily the
antenna bandwidth) could be improved without increasing the cost by
altering the aspect ratio and the similitude scale factor of the antenna,
Specifically, it was determined that reducing tower heights and in-
creasing top hat spans would result in greater bandwidth for the same
cost. The performance characteristics of various aspect ratios® and
similitude scale factors** were determined from a model study carried

out under Change Order F of the PER.

The model study indicated, however, that the self-resonant fre-
quency of the antenna for the near-optimum combinations of aspect
ratio and similitude scale factor was marginally close to the 30-kc
upper operating limit specified for antenna performance. This in-
cluded some reduction in resonant frequency because of residual in-
ductance in the tuning and coupling circuitry at the high end of the
frequency range. Since it was not considered economically feasible
to use series capacitive tuning to provide for operation above natural
resonance, the U, S. Navy directed that this method not be used.
Therefore, other means were sought to extend the operating range
with inductive tuning. The method used to solve this problem was the
reduction of the aggregate downlead inductance by altering the configu-

ration or by employing more parallel conductors,

* Aspect ratio a is defined as lhe ratio ol outer tower height to
maximum top hat span, normalized to the 1.28-Cutler dimensions.

*% Similitude scale factor s relates all linear dimensions to the
1,28-Cutler design for unity aspect ratio.



Since the selection of final antenna dimensions had not been con-
cluded, the resonant frequency study was carried out on a 1:100 scale

model of the 1,28-Cutler configuration.
3.1 Techniques

To increase the resonant frequency, several downlead configura-
tions were suggested which would alter the effective radius of the aggre-
gate downlead path (consisting of six identical cages or groups) with the
possibility of reducing the inductance. Since the downlead '"bundle' was
roughly 700 feet in diameter and only 900 feet in length, simple analytical
approximations based on long, thin conductors did not produce accurate
quantitative results. However, for such simple structures the induct-
ance is proportional to the logarithm of the length-to-diameter ratio.
Therefore, it was expected that increasing the effective diameter of the
downlead bundle would result in the desired increase in resonant frequency.
However, it became apparent that the structural problems associated with
increasing the center tower-downlead truss separation were formidable,
For this reason several configurations were tested which employed a
variety of truss and hinge point locations as well as various numbers of

downlead conductors.

3.2 Description of Tests

Figure 3-1 is an elevation view of a typical downlead configura-
tion. Since the resonant frequency tests were undertaken at the start of
the final design contract and prior tc the determination of the first Trans-
mitter/Helix Building configuration, the Helix Building design of the PER
was used for these tests; this version employed three bushing entrance
points each of which fed two adjacent panels, The dimensions lettered
(A), {(B), and (C) in Figure 3-1 are those which were varied and found to

influence the resonant frequency.
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For each downlead configuration, the effective height and static
capacitance as well as the base impedance were measured, Particular

attention was devoted to impedance measurements near resonance,

Figures 3-2, 3-3, and 3-4 show the various downleads tested.
For zll types of downleads and all positions of the downlead truss, the

elevation of the downlead truss was maintained approximately constant.

Tests 1 through 6 employed a 4-wire cage for the hinge-point-
to-helix house bus; Tests 7 through 12 used a copper tube of approxi-
mately equivalent inductance per unit length. Beginning with Test 9,

a completely new top hat replaced the earlier version which had been
damaged by wind. These changes introduced very minotr variations in
performance which were not related to the particular downlead configu-~

ration involved.
3.3 Test Results

Table 3-1 shows the significant dimensions of the various down-
leads along with the effective height, static capacitance, and resonant
frequency. Also included is the unloaded or lossless antenna band-
width (bw,) at the design frequency (15.5 kc) derived for comparison.

All data given is referred to full scale operation.

Initially, it was proposed that three downlead pulloff points
(i.e., A = 38i, 481, and 581 feet in Figure 3-1) would be tested along
with various hinge-point locations. However, in implementing the
tests, it was decided that the intermediate (A = 481 feet) pulloff point
would be tested only after the extreme position {A = 581 feet) proved

effective.

The original goal for the resonant frequency was about 33.3 kc.

This was established by assuming a 10-percent reduction due to residual
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tuning and matching inductance and a minimum upper operating frequency
of 30 kc. The exact effect of the residual inductance depends on tuning
component design, which was not refined at that time. Therefore, the

10 percent margin was tentatively established for this purpose.

The first five tests explored the various positions of the 4-wire
cage downlead (the full-scale version consisted of four 1i-inch conductors
positioned at the corners of a 2-foot square). No combination of dimen-
sions in the range considered feasible was found which would yield the
desired resonant frequency. At this point, the cage downlead was dis-
carded in favor of a spread or fan arrangement to further reduce the
downlead inductance., Test 6 employed an 8-wire fan downlead which
was positioned at the extreme pulloff point (A = 581 feet) and resulted
in a resonant frequency of 35, 10 kc, well above the 33, 3~kc goal. Test
7 introduced an increase in the hinge-tower separation (B) from 320 to
581 feet; this produced a small reduction in resonant frequency to 34. 98
kc. At this time, the structural problems associated with this larger
separation requiring a very large downlead truss and the windloading on
the 8-wire fan dictated that further effort be made to reach a compro-

mise version which would be economically acceptable.

Test 8 explored the possibility of reducing the number of con-
ductors in the fan from 8 to 4, For the same A and B dimensions as the
8-wire fan in Test 7, the 4-wire version yielded a resonant frequency of

34.47 ke, a 0.51 kc reduction.

At this point, the model was damaged by ice and wind to the point
that further work required a complete replacement of the top hat. After
the new top hat was erected a control test {Test 9) was made to show any
changes that had been introduced in the top hat replacement. Compari-

son of Tests 1 and 9 showed essentially no change except for a resonant

3-9




irequency increase of some 0. 18 kc over the Test 1 results, However,
Test 9 rather than Test 1 was used as a reference for Teste 10 through

12.

Tests 10 and 11 show the result of replacing the PER downlead
(Test 9) with fans of 8 and 4 wires, respectively, with the same A, B,
and C dimensions. This resulted in an increase in the resonant fre
quency to 33.27 kc for the 8-wire fan, and to 32. 87 kc for the 4-wire
fan, This result is marginal for the assumed 10 pescent reduction due
to residual inductance, but does indicate the feasibility of the fan-type

downlead as a means of increasing resonant frequency,

Tests 14A and 14B involved two minor changes which were found
to have no measurable influence on resonant {frequency. Iu Test 11A,
the hinge-point counterweight halyards and insulators were added. Test
118 introduced a small shunt capacitance /, 005 uf full gcale) inside the
Helix Building across the antenna termirnals. Both changes should not
be expected to change the resonant frequency appreciably since a voltage
node at the antenna base at resonance renders shuut elements ineffective

at that point.

Test 12 shows the effect of increasing the B dimension to 505
feet (making the downlead slope away‘from the tower base) in a manner
suggested by the structural designers. This produced a slight itcrease
in resonant frequency to 33, 05 kc, 0, 18 kc above the value for Test 11,
Since Tests 11 and 12 both employed 4-wire downleads, some further
increase could be predicted for the 8-wire fan in the Tesl 12 configura-
tion. Comparing Tests 7 and 8 and Tests 10 and 11 shows an average
increase in resonant frequency of 0.45 ke for the 8 over the 4-wire fan.
Extrapolating Test 12 results on this basis yields a predicted resonant
frequency of 33,50 kc for the 8-wire fan ir the Test 1. configuration.

This value safely satisfies the 33,3 kc goal,
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4, ANTENNA SELECTION

The initial configuration of the vlf antenna to be modeled in the
final design phase was developed® through the consideration of the various
design constraints of cost, performance, reliability, etc., in relation to
analytical data developed in preliminary studies of structural and elec-
trical properties of various alternatives. Specifically, model studies®
provided information on the variation of electronic performance with

structural variations of the following types:

{a) Size and aspect ratio of the antenna in comparison with the
1.28 Cutler design.

(b) Downlead configuration,

{c) Halyard slope, tower cantilever, and "B" tower-height

compensation,

During the development of the final design, the various cost and
performance constraints were continually revicwed to take advantage of
every opportunity to improve performance or to reduce cost as a result

of design Lrends established in the preliminary phases of planning.

%  Further details on the selection procedures are contained in HNCD
letter of 7 February 19624 to OiC, "VLF Pacilic Antenna Selection' and
an HNCD report ""Basis of Selection of VLF Antenna Configuration, "
April 1963,

“% Basic antenna studies relating to the 1,28 Cutler design were per-
formed under Contract NBy-37598 and presented in the PER. Specific
studies of the effects of halyard slope, cantilever length and B tower
compensation, together with size and aspect ratio studies, were ac-
complished under Change Order F of that contract. The effect of down-
lead configuration on resonant frequency was explored under the early
phases of Contract NBy-37636; the results are presented under Section
3 of this report,




Particularly, it was recognized that the achievement of optimum band-
width was not compatible with the originally specified upper operating
frequency of 30 kc without employing additional capacitive tuning cir-
cuitry. Consequently, by direction of cognizant Navy offices, a revised

minimum upper operating frequency of 28.5 kc was established.

4.1 Cost-Performance Study

Based on the final phases of the PER and early studies in the
final design program, the modified Cutler design was selected with the

following provisions:

{a) The size of one Cutler-type element was increased by
a factor of 1.28 to provide adequate bandwidth and power radiating
capability.

(b} Vertical halyards were employed and cantilever lengths
were reduced to 10 feet, requiring an increase of 45 feet in the inter-

mediate tower heights to compensate for the cantilever reductions,

These values depart from corresponding PER conditions of
sloping halyards, 57-foot cantilever, and 57 -foot compensation, but

provide roughly equivalent electrical performance.

Considering both structural and electrical aspects, the antenna
recommended for final design was coneidered to have the greatest

potential of meeting the requirements summarized below:

(a) Antenna bandwidth (100 percent efficiency) not less than
37.5 cycles at the design frequency of 15.5 kc.

(b) Upper operating frequency not less than 28,5 kc,

(c) No tuning capacitors required to meet (b) above.

{d) Estimated cost not to exceed that of the Single Modified

(1:28) Cutler Antenna.




Figure 4-1 summarizes the data developed for the cost-perform-
ance study relating the antenna bandwidth and resonant frequency to the
size, aspect ratio, and cost. The data of Figure 4-1 is typical of the
inter-relations considered in arriving at a final configuration. Since
bandwidth occupies a dominant role in the antenna selection, this factor
is emphasized. Considering the bandwidth and cost constraints, the .
acceptable combinations of a and s in Figure 4-1 are seen to lie in the
region above the 37.5 cps line and below the PER cost line. The maxi-
mum antenna resonant frequency in this region was about 30. 6 kc for the
PER design (4-wire cage downleads), which yields an upper operating
frequency of only about 27.5 ke with the 10 percent tuning and coupling

margin.

Having recognized the resonant frequency problem prior to the
start of the final design, the resonant frequency study {Section 3) was
undertaken to develop means of increasing resonant frequency without
degrading other pertformance aspects. IFor the modified 1.28 Cutler
configuration {a = s = 1), the 8-wire fan downlead resulted ir an increase
in resonant frequency of approximaltely 5 percent over the value obtained
with the 4-wire cage downlead in a similar conliguration. Estimates
were made of the effects of the deviation from unily aspect ratio and
scale factor which, together with a 10 percent margin for the tuning-
coupling effect and 1 percent tolerance limit, located the maximum

operating frequency 28.5 kc) line on Figure 4-1.

Considering the three constraint lines (cost, bandwidth, maxi-
mum operating frequency) in Figure 4-1, the point for a = 0. 925 and
s = 1,05 determined the antenna configuration recommended by HNCD.
This choice provides for adequate bandwidth {with no safety margin) .

and maximum operating frequency at an estimated cost not greater than
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that of the PER design. The decision to delete a safety margin to
account for prediction tolerance in the bandwidth parameters was made
with the concurrence of cognizant Navy offices. The recommendation
was predicated on the inclusion of a bandwidth control element in the
transmitter which could compensate for a minor degradation of antenna
bandwidth with some attendent reduction in efficiency. The recom-
mended configuration was accepted by the Navy and modeling pro-

ceeded on the basis of this selection.




5. ANTENNA MODEL STUDY

5.1 Initial Configuration

As a result of the antenna selection study (Section 4}, the antenna
configuration initially constructed for further model study in the final
design stage differed from the previously modeled PER design (1.28

Cutler) in the following aspects:

(a) The aspect ratio a and similirude scale factor s were changed
from unity in the PER version to a = 0.925 and_s_ = 1.05 for the initial
configuration. These changes resulted in towers approximately 25 per-

cent higher and spans approximately 35 percent greater than Cutler,.

(b} The tower heights were further increased to maintain the
average height with the non-counterweighted top hat and the corvesponding

increase in sag.

(c) An 8-wire fan downlead replaced the 4-wire cage previously

used,

(d) The downlead hinge point was positioned at a 500-foot radius

from the center tower and elevated 186 feet above ground.

(e) A combined Transmitter/Helix Building replaced the PER
helix building at the base of the center tower. Also, the tower was nested

in a well in the building rather than directly on the roof.

{(f) The busses combining the downleads at the Transmitter/Helix
Building were external rather than internal as in the PER design. These
initially entered the building through a single bushing rather than the pre-

vious three.

(g) Initially, the internal circuitry was not installed in the tuning

and coupling area of the T/HB. A short vertical lead simulating a 10-inch




bus provided a convenient measuring point at an opening in the model

T /HB floor.

Figure 5-1 shows a plan view of a typical panel of the top hat.
As initially proposed,the panel consisted of four outer conductors (Nos,
1, 2, 7, and 8) of aluminum clad (approximately 7 mils of aluminum)
nominally f-inch outside diameter cable, whereas the four inner con-
ductors were of 1-inch ACSR (i.e., with a solid aluminum outer lay).
Also, the outer two conductors of each side were enlarged to 1-1/2
inch diameter in the region near the intermediate towers. The ACSR
conductors were proposed where structurally feasible in an attempt to
reduce losses. Figure 5-2 shows an elevation view of a longitudinal
pancl cross section with an exaggerated vertical scale to emphasize the
sag. For the model version,each catenary was approximated by estab-
lishing two sag points as shown in Figure 5-3. This top hat {designated

Top Hat i) has a centroid elevation of 900 {eet.

in the proposed design, the transmitter and the tuning/coupling
circuitry were housed in the same structure {T/118). This eliminated
an extensive transmission line as well as provided other structural
economies. Figure 5-4 shows the external fecatures of the T/HB as
initially proposed. The center tower was placed in a well approximately
&5 x 40 feet in the building. The model version of the building was made
of sheet brass and included the tower well and the internal switch rooms

which form a corridor beneath the bushing entrance area.
5.1.3 Bushing

The T/HB shown in Figure 5.4 used only one entrance bushing

instead of three as in the PER version. At the beginning of the study,
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it was not known whether a single bushing could be obtained which could
carry the entire base current, but the advantages of the single-bushing
approach warranted its inclusion in the initial model. This approach
uses external bus work to combine the six downleads rather than the
internal bus work used in the PER design. Although this required three
insulated downlead pulloff structures on the roof, it resulted in a reduced

inductance with a correspondingly higher resonant frequency.
5.1.4 Downleads

An 8-wire fan downlead was selected to provide a sufficiently high
resonant frequency from the results obtained under the resonant frequency
study (Section 3). Figure 5-5 shows the details of the downlead arrange-
ment. The spacing of the top hat conductors, designed to equalize the
charge distribution, was preserved at the top of the fan with a tapering
to uniform spacing at the hinge point. At the hinge, the 4-wire cage bus

continues to the T/HDB roof area.

5.2 Evaluation of Initial Configuration

Upon conclusion of the antenna selection study, the initial configu-
ration was evaluated on the model range. This configuration was sub-
jected to a series of measurements to determine its performance charac-
teristics. The measurement program consisted of determining the basic
antenna parameters from which performance under emergency and normal
operating conditions were derived., Detailed data is presented in Appen-

dix A.

5.2.1 Five-Panel (Emergency) Performance

Prior to the erection of the sixth panel, tests were made to estab-
lish the performance characteristics of the antenna in a simulated emer-

gency situation with only five panels in operation. It was expected that
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this would reduce the capacitance and, hence, the power radiating

capability.

The basic full-scale parameters determined together with the
derived characteristics for performance at 15.5 kc with 1 megawatt
radiated power are presented in Table 5-1. Base impedance data over
the entire frequency range, taken at a point at the floor of the I'/HB,

is presented in Figure 5-6.
TABLE 5-1

Parameters and Performance of Initial Configuration

5.-Pancl 6-Pancl
Emergency Normal
Parameters
Effective Height {hy) 625 feet 625 feet
Static Capacitance (Cg) 0.1412 pf 0.1633 pf
Resonant Frequency (f,) 33.05 ke 32.18 ke
Performance Characteristics
Unloaded Bandwidth {bw,) 32.7 cps 37.7 cps
Base Reactance (X ) -56.7 ohms -48.3 ohms
Base Voltage (Vy) 144 kv 124 kv
Top Hat Voltage (Vi) 185 kv 161 kv
Base Current (1) 2559 amperes 2559 amperes
Radiation Resistance (R,) 0. 153 ohms 0. 153 ohms

The reduction in capacitance from the 6-panel case may be
seen from the data for the 6-panel operation which is also presented
in Table 5.1, For 6-panel operation, the static capacitance is 0, 1633 pf,

The 5-panel situation would be expected to have more than 5/6 or 83,3

5-9




DEOC 43-21 630401 Jd ©

20

! ] I T o

H 1 B S 1 11 AT 0 by I I‘

I TEST 21 MEASURED AT FLOOR OF NODEL | 111 HHHHH %

I TRANSITTER/HELIX BUILDING SRt el
FIVE PANEL OPERATION HHH st

-1 RESONANT FREQUENCY = 33.08 KO LT b
[~ REESEENESEREEN ] A
%

-1 A TR T H A H
14 -1 1 -+ T EECSSERRE

-

1

-40

BASE REACTANCE -~ OHNS

-80

-1unﬂ - - - - T “

-120 L1 NEEERENDERWAS ] NEIvH
10 20 30 40
FREQUENCY - KO

Figure 5-6 MEASURED BASE REACTANGE - 5-PANEL OPERATION




percent of the normal capacitance, since some fringing occurs into the
area occupied by the missing panel. The actual 5-panel value is 86.5
percent of the normal capacitance. Reducing the antenna capacitance
increases the top hat voltage (for equal radiated power) above the 161 kv
design value. Also, the reduction in unloaded bandwidth is apparent.

As shown by Table 5-1, the effective height is not affected by the removal

of a panel.

5,2.2 Six-Panel (Normal) Performance

Following the 5-panel tests, the final panel was installed and all
measurements repeated to establish the performance under a normal

operating situation.

Basic full-scale parameters and derived operating characteristics
for the 6-panel situation are shown in Table 5-1. Base-impedance data
over the operating frequency range is shown in Figure 5.7, referred to

the floor of the T/HB as before.

The resonant frequency shown in Table 5-1 does not include the
expected reduction due to residual tuning/coupling inductance. For the
estimated 10 percent reduction factor for this effect, the maximum ex-
pected operating frequency is approximately 28. 96 kc, slightly above the
28.5 kc upper operating frequency established during the antenna selection

study.

The 6-panel model data confirmed all design predictions for full-
power performance and established the capabilities of the proposed
radiator as a satisfactory approach. Although a wider margin in reso-
nant frequency and bandwidth might have been desirable, these two factors
are inversely related necessitating a rather critical compromise in this

area.
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5.2.3 Gradient Distribution

The distribution of gradient on the antenna conductors was deter-
mined from current distribution studies performed on the model. Figure
5-8 shows the current distribution on the typical static panel under nor-
mal full-power operation (i.e., 1 megawatt radiated) at 15.5 kc as derived
from model data. Details of this technique appear in Section 2.2.4, and
the theoretical analysis in Appendix B. A photographic study of corona

on the model under 60-cycle excitation appears in Appendix E.

Areas of maximum gradient can be determined from the data pre-
sented in Figure 5-8 for points along the conductors where the slope of
the current as a function of distance along the wire is greatest. T'he maxi-
mum gradient occurs on the two innermost (Nos. 4 and 5) conductors just
beyond (outer half) the cross-panel catenary, reaching a maximum value
of 0.74 kv/mm, somewhat below the 0.8 kv/mm design limit. It should
be noted that the outer two conductors on each panel half (Nos. 1 and 2,

7 and 8) are enlarged to 1-1/2 inch diameter in the region of the inter-
mediate towers, This enlargement, from the {-inch diameter figure for
the bulk of the top hat, results in tolerable gradient levels which would
otherwise be excessive. For example, the 1-1/2 inch outer conductor
exhibits a maximum gradient of 0,62 kv/mm just beyond the cross-panel
catenary, while a 1-inch diamecter conductor in this area would operate at
a gradient of 0.94 kv/mm for 1 megawatt radiated at 15.5 kc. This
value exceeds the 0,8 kv/mm maximum acceptable value, thereby sup-

porting the requirement for the larger diameter conductor in this area.

The discontinuity in the current distribution along each top hat
conductor at the cross-panel catenary (as shown in Figure 5-8) results
from the diversion of the current from the conductors out along the cate-

nary. Since the catenary is of considerably larger diameter (2-3/16 inch)
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than the other conductors, it provides a greater areca from which dis-
placement current flows to ground, Because of its large diameter,

gradients along its surface are even lower than on the rest of the top
hat, For this reason, a detailed gradient study of this cable was not

considered necessary.

Gradient data obtained for the 8-wire fan downleads is shown in
Figure 5-9. This data was obtained in the same manner as that ob-
tained on the top hat. Except at the lower elevations, the gradient on
the downlead conductors is lower than on the top hat. While measure-
ment accuracy in the lower portion of the fan is rather poor, some
relatively high gradient areas are indicated near the hinge point. How-
ever, these are not expected to lead to corona problems since additional
shielding will be provided at the hinge (in the form of corona rings)

which tends to reduce conductor gradients on the fan.

5.3 Development of Final Configuration

5.3.1 Revised Transmitter /Helix Building

Several changes made in the T/HB warranted model verification.
Requirements {or increased equipment space resulted in a general
enlargement of the building. The internal features of the tuning/coupling
portion of the building (as shown in Figure 5-10) were developed and
modeled for operation at 28.5 kc. Provisions were made in the model
for measuring antenna characteristics through the appropriate circuitry,
as well as through a short vertical lead as in the previous tests. A
further provision was made to allow measurements to be made directly

at the common [eed point below the entrance bushings.
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Dual Entrance Bushings

As part of the revision of the T/41B dual entrance bushings
replaced the single bushing originally modeled. This change reflected
the need for higher current-carrying capability and for higher relia-
bility than could be obtained with a single bushing. Along with this
change, a rearrangement in the downlead buswork on the T/HB roof
was required. Figure 5-10 also shows the revised bus configuration
over the roof area. Some minor reduction ol series inductance was

expected as a result of the change.

Six-Panel Performance [Top Hat i}

For the enlarged T /HB with dual bushings, the basic antenna
parameters determined at the floor of the building through a simulated
10-~inch vertical bus to the common feed point were: effective height,

623 feet; static capacitance, 0,1634 uf: and resonant frequency, 32.25 kc.
Aside from a very minor reductionineifective height and a similar in-
crease in resonant frequency, practically no change resulted in basic

antenna characteristics.

Base reactance data measured atl both the floor terminal of the

model and the common point below the bushings is shown in Figure 5-11,
The floor terminal measurements reilect the insertion of a small induct-
ance attributed to the connecting lead. The normal measuring point
throughout the model study was at the T/I{13 {loor terminal. This point
was selected for convenience and also tor repeatabilily because of a
somewhat better connector configuration. The measurements at the
common point near the bushings required a short {lexible lead whose
position was only approximately repeatable. ilowever, [rom measure-

ments at both inputs the approximate elfect of a short section of "bus'!
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was determined. Since the residual inductance in the tuning/coupling
circuitry at the high end of the frequency range is a determining factor
in the critical area of maximum operating {requency, it is necessary

to consider all reactance data referred to the appropriate terminals.

Effect of Tuning/Coupling Circuitry on Resonance

The approximate configuration of the tuning/coupling component
arrangement and appropriate values for the upper end of the frequency
range were modeled as shown in Figures 5-12 and 5-13. Figure
5-14 shows the measured input reactance through the tuning/coupling
circuitry in the frequency range near resonance. The maximum oper -
ating or self-resonant frequency is seen to be 29,6 kc. This value is
about 4 percent above the minimum acccptable value (28.5 ke) pre-

viously established.

5.3.2 Revised Top Hat Shape

A structural analysis of stresses in the top hat conductors under
conditions of maximum wind loading showed that the proposed Top Hat I
design did not have acceptable salety--lactor margins. The ultimate
yvield of the ACSR cables was degraded by the aluminum outer layer to
such a point that their use was precluded. Therefore, a new top hat
design (Top Hat 'l) utilizing only alummum-clad conductors was devel-
oped to maintain acceptable structural satety-tactor margins during

periods of maximum wind loading.

Increased Top Hat Sag

Top Hat II, composed entirely of aluminum-clad steel conductors
has greater sag and, for the same tower heights, a lower average physi-
cal height than Top Hat 1. Specifically. Top Hat i (as shown in Figure

5-15) has an average height of 891 feet as compared to 900 feet for Top
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Hat I. To determine the extent of degradation resulting from this loss
in average height, the Top Hat II configuration was modeled with the
two-point sag approximation shown in Figure 5-16. This required an
entirely new set of model top hat panels since the revised design em-

ploys longer conductors and increased sags.

Six Panel Performance {(Top Hat II})

The reduction in average physical height of the top loading was
expected to produce a corresponding reduction in effective height.
Basic full-scale antenna parameters measured at the normal T/HB
floor were determined from the model (Test 26, Appendix A). These
parameters were: efllective height, 610 (eel; static capacitance, 0. 1642 pf;

and resonant frequency, 32,45 ke.

Comparing the effective height of Top Hat II (Test 26) to that of
Top Hat I (Test 25) shows a reduction of 13 feet, i.e., somewhat greater
than but comparable to, the 9 foot reduction in average physical height.
The indication from this comparison is that with the incrcased sag, the
average height should be elevated at least to the previous 900 feet to
achieve the same value of effective height. Since the descrepancy of
4 feet between the variation of effective height and average physical
height is well within the +2 percent predicted test accuracy, no further
compensation is justified. For small changes in the '"B'" tower elevations,
it can be shown that the average height changes by one-half the increment
of change. On this basis, a recommendation was made to elevate the "B"

towers 20 feet to compensate for increase sag.

Three tests were run with the Top Hat II in position. Test 26
relates to the basic antenna viewed through the normal T/HB terminals.

Test 27 relates to data derived from measurements made at the common
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lead point near the entrance bushings (i.e., excluding the roof-to-floor
bus inductance). Test 28 defines the maximum operating frequency to
be 29.43 ke including the effect of the tuning/coupling circuitry (see

Appendix A).

5.3.3 Revised Tower Heights

"B'"" Tower Compensation

To restore antenna performance (particularly effective height)
to valucs achieved prior to the increased sag of Top Hat II, the elevation
of the intermediate "B" towers was increased by 20 feet to 1195 feet.
This brought the average top hat elevation to approximately 901 feet,
or 1 foot above the Top Hat I value. Although the top hat sags and con-
ductor lengths remained virtually unchanged for this small variation
in the ""B' tower elevations, the revised configuration is referred to as
Top Hat 1Ll for reference. Figure 5-17 shows a longitudinal panel cross
section of Top Hat 1T in elevation. The modeled version of this design
is shown in Figure 5-18. For modeling purposes, the top hat panels

used were identical to those of Top Hat II.

For the revised top hat with the recommended 20-foot "D' tower
compensation, the basic antenna paramecters measured at the T/HB floor
were; effective height, 629 feet; static capacitance, 0, 1633 pf; and reso-

nant frequency, 32.45 kc.

Comparing these values with those obtained with Top Hat I (which
involved only one bushing), it is apparent that the compensation for in-
creased sag was sufficient to restore, or slightly increase, the effective
height while the static capacitance remained the same. Some minor re-
duction of series inductance through two bushings instead of one appar-
ently accounts for a slight increase in the resonant frequency from 32. 18

kc to the 32,45 kc value shown above.
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Figure 5-19 shows the input reactance measured at both the T/HB
terminal {Test 31) and at the common point below the dual bushings (Test
30). Comparing the two sets of data shows that the difference can be
described by a series inductance of approximately 14.3 ph (full scale
value). Using this value, it is possible to refer all reactance data from

the flecor terminal to the common point.

The maximum operating frequency was determined for the Top
Hat ITI configuration in Test 29. With the modeled tuning/coupling cir-
cuitry at the upper portion of the frequency range, the system resonant
frequency was reduced to 29.45 kc, only 0.5 percent below the value

achieved with the initial configuration (Top Hat 1).

5.3.4 Wind Distortion Study

To establish the performance reliability of the antenna to perform
under extreme wind distortion, a model study was made for the distorted
configuration. For design purposes a maximum wind of 130 mph velocity
(at 30-foot elevation) was established., Computations were carried out
for various wind directions with respect to a typical panel, and con-
ductor positions were established. The particular wind orientation
chosen for the model study was one in which two panels were subjected
to a direct cross wind as shown in Figure 5-20. Although the choice of
this case was aribtrary, it was felt that it represented an extreme dis-
tortion and, as such, was likely to indicate the extreme degradation of

electrical characteristics,

F'rom the computed positions of the top hat conductors {Top Hat
IIT), largc-scalc plan and elevation drawings were made of each con-
ductor span, On these drawings a two-point approximation was con-
structed to simulate the distorted condition. Each half panel was inter-

sected by two "distortion planes', the intersection of each individual




DECO 43-21 530401 NJF 3

=
fn S gae——e——
) IITITTTET T I *—Il ot
t +
L 7
it = ]
J b (=] (] -
o2 - == E Lol - ]
™ [l - —— ]
— y | > M — D Al — [
e T . 1 w— - W -
e 4 = 3 — o . D -
e iatanbbls ot et K=Y ©a o~ @
2 g = =5 =Rz - s
= = . — . wam 0 — u hd
[ e~ | |.&WH|I! © [~ T L o
e R X Ry T A < I h E
el b I~ o -l xo mw =Eo
P X - TTTITeose x o o=
= S § Mg Cutl— Wl MO D —
— A W) AT D — D
. <« A TClaNeg - —me
_ 1t VN acoc EXE -
= Q —ll e e i e
L AR - -0 k. e — . A
R \ —c) et~
- ——t B o — — acom —
RSO Nl R IR iR A
I Jo—— - 02 O W O — € ) -
- = + £ Ik Lok 5
LY ) ekl O DD D
T Y - oD & e ID A o)
D ] wib= ¢ Ll W@ (W
- = w ["-X- 5
e oe = ©
1 T
— ! et
i Sen 1 ;
T AN . ] 1l
R } - Y ] i |
RESRE N t T
, N :
- AN R
T AN ] |
! A\ 1.
— Y 1. ]
— JE— O
JEPPRRI - &
N W B
\Y g
= - ]
" —— - [ hr/
™~
et —l <
! I
et e 4
" ! =
o o © o o (=)
1

SNHO - JDRVIOVIE 3Sva

-100

FREQUENCY - KC

MEASURED BASE REACTANCE AT TWO REFERENCE POINTS

Flgure 5-18

5-31




DECO 43 21 630320 C

STATIC LOAD
YIND LOAD

3000

2000

1000

- FEET

SCALE

PLAN VIEW OF ANTENNA UNDER MAXIMUM WIND DISTORTION

Figure 5-20

5-32




conductor with the distortion planes being derived from the drawings.
Poles were then rigged on both sides of each panel in the distortion
planes to support nylon lines constraining the model conductors in

their proper positions.

Figures 5-21, 5-22, and 5-23 show the three wind attack angles.
The plan position and elevatlion ol each conlrol point determines the top

hat shape.

As the top hat is lifted and displaced, the associated downleads
are similarly distorted. Figures 5-24, 5-25, and 5-26 show the various
downlead positions used on the model to simulate maximum wind (130
mph). It was observed that of the three representative downleads, only
the No. 2 fan approaches the center tower guys. Consequently, it was
expected and confirmed by measurement that the critical area of corona
formation occurred at the point where the No. 2 fan is displaced into
close proximity with the top two guy levels (See Figure KE-3, Appendix E).
Detailed structural analysis revealed a similar deflection of the offending
guys in the direction of the wind which tended to alleviate the problem,
However, it was found necessary to study the effect of providing addi-

tional fan-guy separation appropriate to lower wind velocities.

Six-Pane! Performance

After all positioning poles were erected for the distortion rigging,
but before the model was actually distorted, the basic antenna properties
were measured to establish the effect, if any, of the 36 holes and numer-
ous nylon lines. Although considerable care was taken in preparing the
wooden poles by drying and shellacing, it was expected that soine inor

effect would probably result. In general, the effect can be explained by
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considering the poles and rigging as a path for excess polarization
current®, that is, vertical displacement current in excess of the
current which would flow in the absence of the dielectric rigging. If
the rigging effect increases the relative dielectric constant K for the
region of the antenna, the capacity Cs can be expected to increase

and the effective height to decrease according to the following rela-

tions:
Dielectric Alr Alr + Rigging
® REffective Height hg hy /K
® Static Capacitance Ce KCsq
® Dielectric Constant 1 K

Comparing Tests 35 (Air) and 36 {Air + Rigging) for the undis-

torted top hat ({ff) yields the following full scale values:

Air Air 1 Rigging Percent Change
o Effective Height 628 ft, 619 ft. -1.8
® Static Capacitance 0. 1637 pt 0.1640 pf +0. 18
e Resonant Frequency 32.28 ke 32.38 ke 0

Although the trend of effective height and capacitance change are
as expected, the relalion ol these parameters 1o an effective dielectric
ccnstant K is not exact. Apparently the distribution of poles and rigging
near the top hat is not sufficiently uniform to permit the simple relations

described above to be applied. Since, however, the total change in

S. A. Shelkunoff and H. T, Friis, Antennas, Theory and Practice.
John Wiley and Sons (1952). (Sec Scction 10. 44, Magnetically and
Dielectrically Loaded Antennas.)
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effective height is less than 2 percent {the predicted tolerance on this
parameter) and the capacitance change even less, it appears that the

effect of the distortion rigging was practically negligible.

For the top hat (6 panels) under maximum wind distortion, the
following data was obtained at the normal T /HB floor terminal (Test 36):
effective height, 684 feet; static capacitance, 0, 1575 pf; and resonant

frequency, 30,68 kc.

Base reactance data for the wind-distorted configuration is
plotted in Figure 5-27. Physically, the horizontal wind loading has the
effect of rotating the plane of each sagging top hat span toward the hori-
zontal, the degree of rotation depending on the angle between the wind
and the span. This has the effect of raising the average top hat eleva-
tion, thus increasing the effective height, and reducing the capacitance.
If the antenna could be represented by a single (top loading) capacitance
and a single thin, conducting downlead, free of the perturbing influence
of grounded towers and long, relatively low, horizontal runs of cage
conductors, then the increase in effective height due to an increase in
the average top hat height would be approximately the same as the de-
crease in capacitance. However, for an antenna with a considerable
near-base capacitance and many parasitic conducting structures, the
two effects are not comparable. In particular, elevating the horizontal
downlead bus-work (connecting the hinge points and the pulloff points on
the T /HB) greatly reduces the near-base capacitance, This has the
effect of raising the apparent effective height (i.e., reducing the loading
effect of the near-base capacitance) and adding to the increase in the
average top-loading which yields an exaggerated (positive) change in
effective height compared to the (negative) change in static capacitance.

(5ee Appendix D.)
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Comparing the rmeasured antenna characteristics under static

and maximum wind conditions yields the following full-scale data:

Test 35 Test 36
Static Max. Wind Percent
Loading Loading Change
& Effective Height 619 feet 684 feet +10,5
® Static Capacitance 0.1640 pf 0. 1575 pf -3.96
¢ Resonant Frequency 32.28 ke 30,68 ke -4, 94

Since all the downlead trusses are lifted by the wind, the down-
lead bundle acquires a somewhat longer and thinner shape. This, to-
gether with the increase in average top hat elevation, accounts for the

associated increase in inductance and reduction in resonant frequency.

Under the condition of maximum wind distortion, the simulated
tuning/coupling circuitry appropriate to operation at the upper end of
the frequency range was inserted (Test 39), and input reactance was
measured to determine resonance, For this arrangement resonance
occurs at a scaled frequency of 28,25 ke, some 0.25 kc below the 28,50
ke figure specified., However, since the predicted frequency of occur-
rence of 130 mph winds is approximately once in 50 years, the situation

was considered tolerable.

Gradient Distribution

Current distribution measurements were performed at a scale
frequency corresponding to 15.6 ke (i.e., 1560 kc) using the shielded
oscillator probe in a manner similar to that outlined in Section 2.2.4
for the case of Tap Hat I under static loading. From the current dis-
tribution, the electric field gradient is determined from the change in

current per unit area of top hat conductor (See Appendix B).




Under conditions of maximum wind loading, the antenna conductors
are displaced from their static or dead-load position, changing the various
spacings between conductors and between conductors and ground. This
distortion changes the current distribution, increasing the gradient in
some areas. Critical areas of increased gradient were expected at points

where top hat and downleads were blown towards grounded towers and guys.

Figures 5-28 through 5-33 show the distribution of gradient on
the three wind-distorted top-hat panels appropriate to the maximum wind

orientation chosen for study.

Although the expected increase in maximum gradient on the top
hat was observed, the critical area oi inleresl was on the No. 2 panel
downlead fan. This particular downlead is displaced toward a guy plane
for the chosen wind. Some advantage is gained by virtue of a similar de-
flection of the guys, but not sufficiently to preclude the possibility of a
limited area of corona formation. The other downleads (Nos. 1 and 3)
are not deflected to positions near towers or guys, so that only the No. 2

fans are critical.

To provide detailed information on the No. Z fans, three wind
velocities were studied which would indicate several situations expected
during periods ol storin activity, Figures 5-34, 5-35, and 5-36 show the
critical downlead under 430, 110, and 90 mph winds, respectively. Under

these conditions the following relations were obtained:

Maximum Power

No. 2 Down- Gradient Radiated Frequency
Gust Velocity  lead--Guy {1 Mw {0.8 Kv/mm ot Occur-
at 30 fcet Scparation Radiated)  Gradient) rence
130 mph 20 feet 1.3 kv/mm 380 kw 1 in 50 yrs.
110 mph 45 feet 0.9kv/mm 480 kw 1 in 15 yrs.
90 mph 70 feet 0.8kv/mm 1000 kw 1 in 6 yrs.
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6. SUMMARY OF » N1DICTED PERFORMANGE

This reporvi presents the results of the antenna model study which
was caryied out for the development of the design of the VLE PAC antenna,
Beginning with an cvaluation of the initial contiguration (Section 5. 1) this
study includes the results of a continuous model program involving
dctailed structural revisions which occurred as part of the refined design.
These revisions included changes in top hat shape, intermediate tower

elevations, entrance bushings and Transmitter/Helix Building. In gen-

A
.exal, theelects of such revisions were reflected by relatively minor

changes in electrical performance as derived fr&m model measurements,

Y
Consequently, thec mcasurcment of some aspects of performance which
were not considered of primary importance or were not expected to

change appreciably were not repcated for the final revisions.

For comparison, Tabie 6-1 summarizes both the predicted full-
scale basic antenna parameters and the derived operating characteristics
relating to full-power (1 megawatt radiated) operation at the design
frequency (15.5 kc). This data is given for (a) normal (6 panel, no wind)
operation, (b) emergency (5 panel, no wind) operation, and (c) for the
condition - | 6 panels and maximum wind (130 mph) distortion. The
normal and wind-distorted data were obtained from the final model
with all pertinent revisions included. However, the emergency con-
dition was evaluated only on the initial configuration. Since no major
changes weare determined in the performance for the normal condition
(compare, for example, the results of Tests 22 and 34) it was consid-

ered unnecessary to repeat the emergency condition measurements.

The base recactance values shown in Table 6-1 include all
corrections and arc referred to the bushing ¢ntrance on the antenna.

. : | .
Figure 6-1 is a plot of the corrected input reactance over the entire

B I



TABLE 6-1

Summary of Performance

Basic Parameters: (1) (2) (3)

Normal Operation Emergency Op- Maximum
6 panels, no wind eration 5 panels, Wind 6 panels

no wind

Effective Height - ft. 628 625 684

Static Capacitance - pf . 1637 L1442 . 1515

Resonant Frequency -~ kc 32.28 33.05 30.68
Performance Characteristics:

(15.5 ke, 1000 kw radiated)

3 db Bandwidth - cps 38.2 32.7 43.5

Base Reactance - ochms -46.9 -56.7 -47. 7

Base Voltage - kv 123. 144. 113.

‘Top Hat Voltage - kv 160 185 152

Input Current - amps 2545 2559 2336

Radiation Resistance - ohms .154 . 153 . 183

Average Gradient - kv/mm .43 .52 .43

Maximum Gradient .74 >, 84 1.30
With Coupling Circuitry:

Maximurn operating freq. -kc 29,45 -- 28.25
Miscellaneous Data:

Apparent Inductance - ph 149 164 171

Antenna Q (15.5 kc) 406 474 356
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range of operating frequencies referred to the bushing entrance. Note
that the resonant frequencies (zero reactance) indicated in Figure 6-1
differ slightly from the tabulated values taken directly from model data,
reflecting the corrections and different reference point involved in the

figure,

Considering the results of the modcl study, the configuration
selected adequately meets the design goals. The bandwidth require-
ment (not to be less than 37.5 c¢ps) is exceeded slightly under normal
conditions and only degraded under emergency operation where such
degradation was considered acceptable. Similarly, the maximum
operating frequency (not to be less than 28. 5 kc) was exceeded by
almost 1 kc under normal operation and violated only under maximum
wind distortion by 0.25 ke, In all cases considered, the average gra-
dient on the antenna conductors fell below the design limit (average
not to exceed 0. 65 kv/mm), with the maximum value exceeding the
tolerable limit (maximum not to excecd 0. 80 kv/mm) only for full-
power operation with 5-panels and for maximum wind distortion., Since
the full-power rcequirement is relaxed for 5-panel operation, this rep-
resents no problem. Similarly (see Seciion 5.3, 4] the cxccss gradient
under wind distortion was not considered intoclerable considering the

relative infrequency with which such such high winds are incident to

the site.



Appendix A: MODEL DATA

This appendix contains the data obtained on the VLF-PAC model
during the measurement program. Table A-1 presents the effective
heights, static capacitances, and resonant frequencies for Tests 21
through 39; tower heights, number of panels, and dates of tests, are also
included. Table A-2 presents a tabulation of the base reactances meas-

ured on the model at various stages of development.

Detailed descriptions of the test procedures and theoretical back-
ground are given in other sections of this report; however, certain com-

ments are repeated here for refercnce.

¢ Effective heights — An average was taken of several runs
made on each test. This average was corrected for the effect of the input

susceptance of the cathode follower driving the voltmeter.

® Static capacitances — The average of several readings was
divided by 1. 027 to correct for the effect of the wires on the model being

slightly larger than 1/100 of the full-scale size.

8 Rescnant frequencies — The resonant frequency was obtained

by interpolating to the frequency at which the measured base reactance was

zZero.

8 Measured base impedances -~ The resistive term is tabu-
lated for completeness only, but should not be considered indicative of radia-
tion resistance or full-scale losses because of the inability to accurately

model ground plane and cable conductivities.
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TABLE A-2

Measured Base Impedance (Referred to Full-Scale Antenna)

TEST 21
Frequency Impedance Frecquency Impedance
KC O hms KC Ohms
10. 00 0.21 - j102.0 31.50 0.86 - j3.82
12, 45 0.20 - 377.9 32.00 0.89 - j2.19
14. 00 NR - j6b6.1 32.50 0.91 - ji1.54
17. 50 0.36 - j47.2 33.00 0.92 - jO. 15
20. 00 0.41 - j35.0 33.50 0.97 +j0.75
22.50 0.50 -~ j26.9 34. 00 0.99 + 1. 80
25, 05 0.55 - j19.8 35,00 1.03 + j4.00
27. 50 0.65 - ji3.1 37.50 1.20 + j8. 55
30. 00 0.79 - j6.87 40. 00 1.40 +j13.0
31. 00 0.85.-j1.84
TEST 22
Frequency Impedance Frequency Impedance
KC Ohms KC Ohims
10. 00 0.16 - j88.0 34.50 0.85 ~ ji. 43
12, 45 0.24 - j6b,7 32.00 0.88 - j0. 41
14. 00 NR - j57.1 32.25 0.88 + jO. 06
17. 50 0.32 - j38.9 32.50 0.90 + j0. 62
20. 00 0.40 - j30.0 33. 00 0.92 + j1.50
22.50 0.48 - j22.7 35.00 1,01 +j5,23
25. 05 0.55 - j15.6 37.50 1.20 +j10.0
27.50 0.62 - j9.83 40. 00 1.40 +j14.0
30. 00 0.76 - j4.33
TEST 23
Frequency Impedance Frequency Impedance
KC Ohms KC Ohms
10, 00 NR - j86.0 29.50 0.80 - joO.3
14. 00 NR - j50.0 29.60 0.81 + j0.
20, 00 0.40 - j26.0 30.00 0.82 +j1.3
25, 00 0.65 - j11.2 35.00 1.40 + j14.7
28,90 0.79 - j2.1 40. 00 1.50 +j21.0

NR - No Reading




TABLE A-2 (Cont.)

TEST 24

Frequency Impedance Frequency Impedance
KC Chms KC Ohms
10. 00 0.23 - j86.0 33.50 0.92 - j0.30
14. 00 0.30 - j55.7 33.70 0.95 + joO.
20,00 0.40 - j31.0 33.75 0.92 + ;0.1
25.00 0.59 - ji7.6 34, 00 0.93 +;0.59
30. 00 0.79 - j6.67 35. 00 1.01 + j2.88
32.00 0.88 - j3.12 40. 00 1.42 +j10.8
TEST 25
Frequency Impedance Frequency Impedance
KC Ohms KC Ohms
40. 00 0.25 - j85.0 32. 00 0.90 - j0. 63
14. 00 NR - j55.0 32.25 0.90 + jO.
20.00 0.42 - j29.5 35,00 1.02 + j5.29
25.00 0.49 - jib.6 490. 00 1.58 +ji3.5
30. 00 0.80 - j4.66
TEST 26
Frequency Impedance Frequency Impedance
KC Ohms KC Ohms
10. 00 0.18 - j85.0 32.00 0.80 - jO.78
14. 00 NR - j55.0 32.45 0.89 I joO.
20,00 0.41 - j29.5 35. 00 1.00 + j4.85
25.00 0.58 - j15.8 40, 00 1.52 +ji3.4
30. 00 0.77 - j5.00
TEST 27
Frcquency Impedance Frequency Impedance
KC Ohms KC Ohms
10. 00 0.18 - j85.5 32.00 0.86 - j3.1
14, 00 NR - j55.7 33.55 0.90 + jO,
20. 00 0.39 - j31.0 33,60 0.91 + jO,
25,00 0.57 - j17.2 35.00 0.99 + j2.86
30. 00 0.77 - j7.00 40. 00 1.45 + jit.5

NR - No Reading




TABLE A-2 (Cont.)

TEST 28

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10. 00 0,18 - j82. 0 29.40 0.79 +j0.

14. 00 NR - j51. 4 29.45 0.80 +j0,

20. 00 0.43 - j25.5 30, 00 0.81 + ji.3

25,00 0.61 - j10.4 35.00 1.07 +jiz. 0

29. 00 0.78 - j0.86 40, 00 1.53 +j21.5

TEST 29

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10. 00 0.20 - j87.5 29.50 0.81 + j0,

14. 00 NR - j52.1 29.60 0.81 +j0, 34

20. 00 0.45 - j25.5 29.790 0.82 +j0. 60

25. 00 0.641 ~ j10. 8 30. 00 0.83 1 j1.3

29.00 0.80 - j1.0 35.00 1. 09 + j12.0

29, 45 0.82 +j0, 40. 00 1.58 +j21.8

TEST 30

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10, 00 0.20 - j86.5 33,60 0.93 - j0. 45

14. 00 NR - j56.1 33.75 0.94 - jO.1

20. 00 0.40 - j31.5 33.85 0.95 +j0, 0

25,00 0.58 - j18. 0 35.00 1.04 + j2.0

30. 00 0.79 - j7.14 40, 00 1. 48 + j10.5

32.00 0.88 - j3.28

TEST 31

Frequency Impedancc Frequency Impedance
KC Ohms KC Ohms

10. 00 0.20 ~ j85.5 25.00 0.59 - j15.8

i4. 00 NR - j55.0 30.00 0.79 - j5.00

20,00 0.41 - j29.5 32.45 0.90 + jO,

TEST 32

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

31.95 0.89 + ;0. 32.40 0,91 + j0.77

32,15 0.90 + jO. 34 34.00 1. 00 + j4. 114

32.30 0.90 + j0. 62

NR - No Reading



TABLE A-2 (Cont.)

TEST 33

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

31. 95 0,90 + jO.

TEST 34

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10. 00 0.23 - j85.0 32.00 0.89 - j0.62

14, 00 NR - j55 32.28 0.90 + jo0,

20. 00 0.42 - j29.5 32.45 0.91 + i0. 46

25. 00 0.58 - j15.8 35,00 1,03 + j5.14

000 . 0,79~ §4.6T .. 40.00 ... 1.524313.9.__

TEST 35

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

32.00 0.88 -~ jO. 62

32.28 0.90 + j0.

32,45 0090 0. Al

TEST 36

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10. 00 0.419 - 387.0 30. 5U 0.55 - jG. 33

14. 00 NR - 355.0 30, 68 0.98 + jo.

20, 00 0.49 - j28.5 30.80 1.00 + 0, 32

25, 00 0.68 - j13.2 35.00 .24 +j9.71

27.00 0.79 - j8.15 40. 00 2,20 + j16.0

30, 00 0.93 -~ ji.5

TEST 39

Frequency Impedance Frequency Impedance
KC Ohms KC Ohms

10. 00 0,22 - j85.0 28.50 0.92 +j0.70

14. 00 NR - j52.1 29.00 0.97 +j2.1

20.00 0.53 - j24.5 30. 00 1.02 + j4. 34

25,00 0.72 - j8.40 35.00 1.32 +j16.3

28,00 0.90 - j0, 54 40, 00 2.47 +j24.3

28.25 0.91 + jO.

NR - No Reading



Appendix B: PERFORMANCE RELATIONSHIPS

Short, capacitively loaded antennas of the type considecred in this
report are conveniently characterized by the antenna capacitance CO and
the effective height ho. The antenna capacitance determines the input
reactance (for frequencies much below resonance fo) and, hence, the volt-
ages which result from the current developed on the radiator. The low
values of radiation resistance Ro which result from short antennas require
large currents to develop appreciable guantities of radiated power, The
top loading, then, is a practical necessity to maintain tolerable voltages
under this situation and also, as will be shown, a vital factor in provid-

ing sufficient radiation bandwidth bw .
o

Effective Height

The effective heigh: depends jointly on the physical length of the
vertical radiator and on the current distribution. If the current distri-

bution as a function of elevation z is I{z) and the physical height is I,

then
g JH
h = — J I{z) dz . (13-1)
o I
[] 0
Where IO = I(0), i.e., the value of the basec current.

For a short, thin radiator I{(z) tapers linearly from a maximum
at the base to zero at the top so that
ho = H/2 (Short, Thin Monopole) . (B-2)

However, if the top loading capacitance C is increased sufficicently,
o

the cffective height fnay be made to approach the physical height.

Lim - H (B-3)
C,=

B-1



Practically, the effective height is considerably less than the phy-
sical height as a result of both a practical limiation on antenna capaci-
tance and, more important, a loss in effective height resulting from cur-
rents in grounded towers and guys. As an approximation, the gross effect
of the oppositely sensed (with respect to the downlead current) currents
in grounded structures may be considered as altering the current distri-

bution, I(z), and thereby reducing the effective height.

An alternate definition of effective height which lends itself to two-
terminal measurements is in terms of the open-circuit base voltage Vb

and the incident, vertically polarized, electric field Ei.
1 = ! . -1
1, Vb/Ei (B-1)
This definition is identical to Equation B~1 for short antcnnas. Equation
B-4 is easier to apply experientally since it requires only two measure-

ments, (i.e., base voltage and incident field) whereas Equation B-1 rec-

quires a knowledge of all currents on the antenna and nearby structures,

Radiation Resistance

The radiation resistance R_ is defined in terms of the antenna base

(o)

current IO and the radiated power PO.

R = P /1 ohms . (B-5)
o} o O

Here P is the summation of the incident power over a closed surface
¢]

surrounding the antenna,

For short monopocle antennas, the radiation resistance is given
by
Ro = 4160 nn® (ho/)&)2 ohms (B-6)



Considering Equations B-2, B-3, and B-6, it becomes apparent
that top loading can increase the radiation resistancc by as much as four
times. This result may be obtained by integrating the total radiated power,
Although this integration can theoretically be performed over any converi-
ient surface, it is simpler to develop far-field (Fraunhofer Region} cx-
pressions for the radiation field and perform the summation of incident

power essentially at infinite distance,
Base Current

Having determined the radiation resistance, the base current can

be expressed in terms of the required radiated power PO.

IO = \/PO/RO amps. (B-7)

Top Hat Voltage

Referring to the basic equivalent circuit shown in Figurc B-1,

the voltage at the top hat (Vt) appears across the antenna capacitance.

V. = I /wC wvolts. {B-8)
t o o

Resonant Frequency

Since the antenna and downleads have some inductance, the antenna

will have a resonant frequency [o given by

1

f = B -
0 TG, @ (-9

Base Voltage

Using the resonant frequency, the base voltage Vb is rclated to

the top hat voltage as
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v, =V, [1 - (f/fo)g:‘ volts. (B-10)

Thus,the base voltage is less than the top voltage for frequencics below
resonance and approaches zero (i, e. limited only by the relatively small
resistance) at resonance, Equations B-8 through B-10 neglect the effects
of the resistance since, for short antennas, they are not significant in
determining the magnitude of the input impedance.

Antenna Q

The bandwidth of the basic antenna, ncglecting loss resistance

R, is derived from the antenna Q, where
Q = 1/wR C . (B-11)
o o
Bandwidth
The half-power bandwidth (bwo) for the undamped antenna is then
given by

i
bw = = = wR C f . B-12
o Q o "o PS ( )
The actual bandwidth bw of a particular antenna is greater than
the valuc indicated by Kquation B-iZ, As a icsuli uf lhe damping cifcct
of loss resistance Ry, where R_ is referred to the antenna circuit as
shown in Figure B-1. Under this condition, the operating bandwidth is

inversely proportional to the radiation efficicncy 1,

bw = . (B-13)

_ (B-14)

usually expressed as a percentage.




Conductor Surface Gradient

Figure B-2 depicts a typical cylindrical conductor section whose
length L, is much greater than its radius r, all dimensions being much
less than the wavelength N\, The relation between the displaccment cur-
rent density and the electric field gradient at the conductor surface will

be developed in terms of measurable quantities.

Writing Maxwell's first equation,

curl H = oE + e%‘:i . (B-15)

Or, for a sinusoidally time varying field,
curl H = oE + jweE . (B-16)

If we further restrict o = 0 for application to the non-conducting space

surrounding the conductor,
curl H = jwek . (B-17)

At the surface of a perfect conductor, only the normal component
of the electric ficld is present Ep. For this componcnt, which is ordi-

narily referred to as the gradient,
curl H = jweE . (B-18)
p p
(Note that E is the generalized vector, Ep being the p component, )

Expanding,

oH,, qus
3é 37

o=

curl H = = jweE (B-19)
P p

This is further simplified by noting that for a long conductor

HZ = 0, reducing the expression to
quS
TZ— = -jLUB Ep . (B—ZO)

B-6
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Near the surface of a long thin cylindrical conductor carrying
current at a low frequency such that the radii of interest are much less
than the radian length (r <<\/2m) the quasi-stationary field predominates
and is given by

IZ

Hqﬂ s 2mr

amps/meter . {B-21)

Inserting this relation into Equation B-20 yields

ol

1 z
= | =

—— —— volts/meter. B-22
P 2nirwe 374

Since the magnitude of the radial field is the critical factor in

corona formation, the absolute value is given in Equation B-22.

In practice, the partial derivative in Equation B-22 can be approxi-
mated by measuring the change in current (AIZ) over a small but finite

increment of conductor length (AZ). This yields a usecful approximation:

AT

|Ep| ~ 'in_iw_e Q—A—ZZ—I) volts/meter. (B-23)

Eguation B-23 yields the conductor surfacc gradient cn an incre-
mental length of conductor. If a large number of similar conductors are
involved, as in an antenna top hat, it is useful to be able to obtain an aver-
age value of the surface field. For this purpose, the incremental quan-
tities AIZ, AZ are replaced by the total base current IO and the total length
of clevated conductor L. This yields the average gradient

1

Ep ~ 2nrwe

I
(—I% > volts/meter. (B-24)

Obviously, if the incremental displacement per unit length AI_ is uniform,

Z
then Equations B-23 and B-24 give identical results, “In practice, however,
it is not usually possible to maintain a uniform gradient, so that the value
given by B-24 is a rough approximation useful only for estimating

purposes.

B-8




Appendix C: ANTENNA EQUIVALENT CIRCUIT

The use of equivalent circuits simplifics some antenna problems
by characterizing a physical structure involving distributed parameters
by a lumped-parameter equivalent, VLF antennas of the type considered
in this report are represented approximately by a simple series L-C cir-
cuit with small series resistances representing radiation and loss com-
ponents. The resistance properties depend strongly upon the frequency,
so that the equivalent resistance must also vary with frequency. How-
ever, the equivalent reactive components are relatively independent of
frequency, so that one circuit can be used to describe the reactance

properties of the antenna over the cntire frequency range.

Figure C-1 (A) shows a simple or basic equivalent vif antenna
curcuit consisting of lumped inductance L,, capacitance C,, and resist-
ances Rg, R, . Except for the previously noted variation in the resistance
values, this circuit is usually a close approximation for any vertical
radiator whose length is short compared to a wavelength, A convenient
technique for handling impedance data from such a circuit is shown in
Figure C-1 (B) in which the base reactance-frequency product is plotted
as a function of frequency squared. For this circuit, the input, or base,

rcactance-frequency product is
fX = 2nLof2 - 1 / 2uC, (C-1)

which is linear in 2, with a zero-frequency intercept of — 41/2nCy

and a slope of 2nL,, as shown in Figure C-1 (B). For this circuit, the
static capacitance C, and the resonant frequency {; provide two easily
measured points which determine the reactance at any frequency at

which the antenna current distribution is approximately linear.
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It was found that extensive data taken from base-reactance meas-
urements on the scale vlf antenna model described in this report showed
an appreciable departure from the expected values indicated by Figure
C-1 (B), particularly as the frequency approached zero. Precise meas-
urements of the static capacitance (Section 2.2.2), and the base react-
ance in the operating frequency range (Section 2. 2. 3) revealed an appar-
ent excess capacitance at the lower frequencies. This suggested an
additional capacitance element in the equivalent circuit across the input
cn the input.side of the antenna inductance. This additional capacitance

Cyp is referred to as "near-base' capacitance.

Figure C-2 (A) shows a refined equivalent circuit including a
near-base capacitor. This additional capacitance is attributed to the
long, horizontal busses and the insulators and support structures
associated with the buswork over the Transmitter/Helix Building. For
this model, the near-basc capacitance is much less than the antenna, or
top hat, capacitance. For this situation, the variation of reactance with
frequency in the region near resonance is relatively indepcndent of Cy.
Thus, as shown in Figure C-2 (B), extrapolating from the near-reso-
Feguenty curve siwuid yield a zero-
frequency intercept depending only on the antenna capacitance, that is

- 1/2nCqy. The actual intercept, however, will yield a value related to

the sum of both capacitances,

Lim fX = 1

£ 0 T 2m(Co + Cy) (C-2)

The above discussion describes one technique for deriving a
three-element equivalent (reactance) circuit from measured data.
This procedure was applied to model data and found to provide an accur-

ate representation of the reactance variation with frequency.




In the development of the equivalent circuit, it should be noted
that two minor corrections were applied to the model base-reactance

data:

(a) Corrected data is referred to the bushing entrance point
rather than the T/HB floor terminal, Comparing data from Tests 30
and 31 reveals an equivalent inductance of approximately 14.3 ph (full
scale) for the floor-to-bushing model lead. This amounts to about 1.4

ohms at 15.5 kc.

(b) The model wire diameter was 1.4 times the scaled diameter,
This increase model capacitances by approximately 2.7 percent. The

corrected data reflects an appropriate reduction,

The base reactance data of Test 34 (referred to full scale) is
shown in Figure C-3 to indicate the way in which the equivalent circuit
values were determined. The plot of the base reactance-frequency
product as a function of frequency squared shown in Figure C-3 exhibits
the departure from a straight line previously noted. Specifically, the
actual zero-frequency intercept indicates a static capacitance Cg of
0.1711 pf while the near-resonance extrapolation indicates only 0, 1530
pf for the antenna or top hat capacitance Co. The difference, 0, 04181 pf,
is attributed to near-base capacilance Cy. Correcting for the wire-

diameter modeling discrepancy yields:

Co = 0. 1490 pf
Cv = 0,0176 pf
Cs = 0.1666 pf

The resonant frequency f, becomes 33, 8 kc after the data is
referred to the bushing entrance point. Note that the wire diameter
discrepancy does not change the resonant frequency due to compen-

sating changes in inductance and capacitance,.
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The effect of the additional near-base capacitance on the perform-
ance of the antenna is not great for the values obtained. The apparent
effective height becomes slightly frequency dependent because of the
loading effect of the near-base capacitance. However, this will only
result in a variation of about 5 percent over the frequency range of
interest. Compénsating changes in apparent effective height and static
capacitance introduced by Cyp result in the same unloaded antenna band-
width. Other performance characteristics reflect negligible differences

when computed from the circuits of Figures C-1 (A) and C-2 (A).




Appendix D: INVESTIGATION OF VLF FIELD DISTRIBUTION

The distribution of surface current density (H-field) and the
distribution of vertical electric intensity {E-field) were determined in
the central region of the scale model. In accordance with Navy direc-
tions, the area investigated was limited to that in the immediate vicinity
of the Transmitter/Helix Building and a sector under one downlead,
Figures D-1 and D-2 indicate these general areas as well as the model
T/HB configuration during measurements, Within the limits of the
structural variations considered in the model program, the final shape
of the building and the top hat are not expected to create any significant
differences in the results, While the hoist houses at the T/IIB were not
included at the time of modeling, any deviations of current magnitudes or
directions created by their addition in actual installation are not expected

to be of any primary consequence,

IFigure D-1 shows the distribution ol surface current density in
the vicinity of the T/HX® with the magnitude given in amperes per meter,
normalized to a base current of 2540 amperes, with the direction of sur-

face current indicated at each point of measuremsent.

In the near vicinity of the T/HB, the H-field distribution is sym-
metrical about the center line, Beyond the influence of the bujlding,
field symmetry is governed by the distribution of towers and guys. Near
the center tower guys, 120-degree sectors of symmetry center along the
center tower guy planes; in the vicinity of the intermediate towers and
beyond, 60-degree sectors of symmetry cenier along radials passing

through each intermediate tower,

In addition to the field distribution on the roof and ground mat,

shown in plan view in Figure D-1, the magnitude and direction of current
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density is also shown along the center line of the T/HB exterior walls.
Radio frequency currents display a tendency toward concentration in the
salient areas of irregular conductors (i.e., those protruding beyond a
circle of equal area). This effect is indicated in Figure D-1 by a plot
of surface current density along one side and to the center line of each
end of the T/HB exterior. Loss studies which guided the distribution of
conductors on the T/HB and in the ground system immediately beyond
were based on the measured data. In accordance with the field data, the
ground system design displays a concentration of buried conductors near
the building corners and some departure from true-radial directions in

accordance with the measured magnitude and direction of surface current.

Figure D-2 is a plot of E-field distribution near the surface in the
vicinity of the T/HB. The electric field magnitude at each point of meas-
urement is given in volts per meter and is normal to the surface. Axes
of E-field symmetry exists identical to those previously described in the
JI-field measurements. The values shown are normalized to full power

operation at 15,5 kc.

Although measurements of E- and H-fields in typical sectors
beyond the T/HB vicinity and the exploration of tower and guy resonances
were originally proposed, they were deleted at the direction of cognizant
Navy offices. It was felt that tlie similarity with the existing Cutler

facility was sufficient to preclude the need for such studies.
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6. SUMMARY OF . EDICTLED PERFORMANGE | P

This repori presents the results of the antenna model study which
was caryied out for the development of the design of the VLF PAC antenna.
Beginning with an evaluation of the initial contiguration (Section 5. 1) this
study includes the results of a continuous model program involving
detailed structural revisions which occurred as part of the refined design.
These revisions included changes in top hat shape, intermediate tower

clevations, entrance bushings and Transmitter/Helix Building. In gen-

e
.eral, thegTects of such revisions were reflected by relatively minor

changes in electrical performance as derived fré;m model measurements.

A
Consequently, the mecasurement of some aspccts\of performance which
were not considered of primary importance or were not expected to

change appreciably were not repecated for the final revisions.

For comparison, Tabie 6-1 summarizes both the predicted full-
scale basic antenna parameters and the derived operating characteristics
relating to full-power (1 megawatt radiated) operation at the design
frequency (15.5 kc). This data is given for (a) normal (6 panel, no wind)
operation, (b) emergency (5 panel, no wind) operation, and (c) for the
condition - | 6 panels and maximum wind (130 mph) distortion. The
normal and wind-distorted data were obtained from the final model
with all pertinent revisions included. However, the emergency con-
dition was evaluated only on the initial configuration. Since no major
changes weare determined in the performance for the normal condition
(compare, for example, the results of Tests 22 and 34) it was consid-

ered unnecessary to repeat the emergency condition measurements.

The base recactance values shown in Table 6-1 include all
corrcctions and arc referred to the bushing entrance on the antenna.

Figure 6-1 is a plot of the corrected input reactané\e over the entire
\

\

\\
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As an example of the detail obtained in this study, consider the
photographs appearing in Figures E-2 and E-3. Figure E-2 shows an
overall view of the model under maximum wind distortion with the
observer loocking toward the center tower from just beyond an outer
tower of panel No. 2, (The large bright spot near the upper part of
the photograph is causcd by the moon.) This study was made with 30
kv excitation. Faint traces of corona are visible on the panel with
brighter indications along the No. 2 panel downlead where it approaches
the center tower guys to within 20 feet. Figure E-3 shows a close-up
of the critical downleads (two panels are distorted identically under the
wind condition studied), indicating clearly the extent of corona in this
area.

Further study of the problem areas was carried out using the
current distribution method to develop quantitative information relating

to corona formation.
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